2.2 Estimating Instantaneous Rate of Change

D Preceding Intervals	E Following Intervals
If $x_1 = a - h$ and $x_2 = a$ then the <i>IRC</i> may be estimated by using the formula:	If $x_1 = a$ and $x_2 = a + h$ then the <i>IRC</i> may be estimated by using the formula:
$IRC \cong \frac{f(a) - f(a - h)}{h}$	$IRC \cong \frac{f(a+h) - f(a)}{h}$
where h is a small number.	where h is a small number.
Note, The smaller is the number h , the more accurate is the <i>IRC</i> estimation.	Note, The smaller is the number h , the more accurate is the <i>IRC</i> estimation.
F Symmetric Intervals	Ex 3. Let $f(x) = 2x^3 + 1$. Estimate the instantaneous
If $x_1 = a - h$ and $x_2 = a + h$ then the <i>IRC</i> may be	rate of change at $x = 1$ by using $h = 0.01$ and
estimated by using the formula:	a) A preceding interval
$IRC \cong \frac{f(a+h) - f(a-h)}{2h}$	
where h is a small number.	b) A following interval
Note, The smaller is the number h , the more accurate is the IRC estimation.	
	c) A symmetric interval
G Algebraic Computation and the Exact Value	Ex 4. Find the exact value of the slope of the tangent $\frac{2}{3}$
Use the formula	line to the curve $y = f(x) = x^2 + x$ at the point $P(1,2)$.
$IRC = m_T = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$	
to find the exact value of the instantaneous rate of change at $x = a$ or the slope of the tangent line at $P(a, f(a))$.	
Note. In this case h is not given and is replaced by 0 at the end of the computation process.	

Reading: Nelson Textbook, Pages 79-85 **Homework**: Nelson Textbook, Page 86: #2, 3, 5, 8